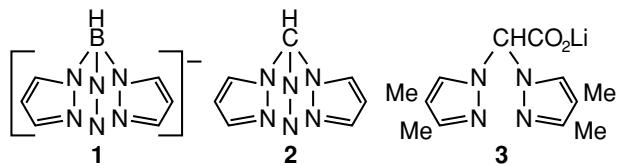


Synthesis and crystal structure of diorganotin(IV) derivatives containing the bis(3,5-dimethylpyrazol-1-yl)acetate ligand[†]

Liang-Fu Tang*, Pei-Juan Zhu and Ji-Tao Wang

Department of Chemistry, Nankai University, Tianjin 300071, P. R. China

Two new diorganotin(IV) derivatives containing the heteroscorpionate ligand have been synthesised by reaction of diphenyltin halides with bis(3,5-dimethylpyrazol-1-yl)acetate lithium and have been characterised by X-ray analysis.


Keywords: diorganotin (IV) derivatives, bis (3,5-dimethylpyrazol-1-yl)acetate ligand

The coordination behaviour of organotin(IV) toward poly(pyrazol-1-yl)borate ligands (*e.g.* **1**) has been extensively investigated in recent years. A number of tin complexes containing poly(pyrazol-1-yl)borate ligands have been synthesised and characterised¹⁻⁴ in which the coordinate geometry around the central tin atom depends very much on the steric and electronic properties of the poly(pyrazol-1-yl)borate ligands, which can be easily controlled by changing the substituents on the pyrazole ring. Some organotin(IV) complexes containing poly(pyrazol-1-yl)borate ligands have also shown interesting structural characteristics and reactivities.⁵⁻⁷ As the isoelectronic and isosteric ligands of poly(pyrazol-1-yl)borates, poly(pyrazol-1-yl)alkanes (*e.g.* **2**) have also been found to act as good donors to organotin(IV) acceptors. The interactions between poly(pyrazol-1-yl)alkanes and organotin(IV) acceptors have also been extensively studied.⁸⁻¹² Studies on the heteroscorpionate ligands are very attractive owing to their advantages, compared to scorpionate ligands, such as the presence of polyfunctional donor spheres, water-solubility and stability towards hydrolysis *etc.*¹³⁻¹⁶ These novel heteroscorpionate ligands are good precursors of transition metal complexes. However, few main group metal complexes have reported.¹⁵ We herein report the synthesis and crystal structure of diorganotin(IV) derivatives containing the bis(3,5-dimethylpyrazol-1-yl)acetate ligand.

The reaction of bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza) lithium (**3**) and Ph_2SnX_2 in a 1 : 1 ratio involved the elimination of LiCl to produce $\text{Ph}_2\text{SnX}(\text{bdmpza})$ ($\text{X} = \text{Cl}$, **4**; Br , **5**) in reasonable yield. However, the reaction of bis(3,5-dimethylpyrazol-1-yl)acetate lithium with Ph_3SnCl did not take place under the same conditions, possibly owing to the increased electron density around the tin atom and steric hindrance. The IR spectra of the two compounds (**4** and **5**) are similar. The $\nu_{\text{asym}}(\text{CO}_2^-)$ signal appears at 1692.5 cm^{-1} for compound **4** and 1677.3 cm^{-1} for compound **5**, which are higher frequencies than that for the free ligand,¹⁵ and the $\nu_{\text{sym}}(\text{CO}_2^-)$ bands in the two compounds are similar, 1460.3 cm^{-1} for compound **4** and 1460.9 cm^{-1} for compound **5**. These IR data suggest that the carboxylate may act as a monodentate ligand. The band at *ca* 1558 cm^{-1} observed in compounds **4** and **5** is assigned to a pyrazole ring vibration. The ^{119}Sn NMR chemical shift for compound **4** occurred at -410.5 ppm in CD_3COCD_3 which is comparable to the shifts reported for six-coordinate organotin derivatives containing poly(pyrazol-1-yl)borates,²⁻⁴ indicating that this compound should be six-coordinate in solution.

* To receive any correspondence. Email address: tanglf@eyou.com.

† This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M)*.

Scheme 1

In order to confirm the coordination mode of bis(3,5-dimethylpyrazol-1-yl)acetate in the two compounds, X-ray diffraction analysis of compound **4** was undertaken. As shown in Fig. 1, bis(3,5-dimethylpyrazol-1-yl)acetate anion is a tridentate ligand, which coordinates to the tin atom by the two nitrogen atoms of the pyrazole ring and an oxygen atom from a carboxylate anion, and the latter is a monodentate ligand which is consistent with the result from the IR spectra. The coordination geometry around the tin atom is a six-coordinate distorted octahedron. The $\text{Sn}-\text{O}$ bond distance is $2.137(3)\text{ \AA}$. The average $\text{Sn}-\text{N}$ bond distance of 2.357 \AA is shorter than that in organotin derivatives containing neutral poly(pyrazol-1-yl)methane ligands, such as $\text{CH}_2(4\text{-MePz})_2\text{SnMe}_2\text{Cl}_2$ (2.436 \AA)¹⁰ and $\text{CH}_2(3\text{-iPrPz})_2\text{SnPh}_2\text{Br}_2$ (2.435 \AA),¹² but longer than the reported data for organotin derivatives containing poly(pyrazol-1-yl)borates,² indicating that the bis(3,5-dimethylpyrazol-1-yl)acetate anion is a better donor than the

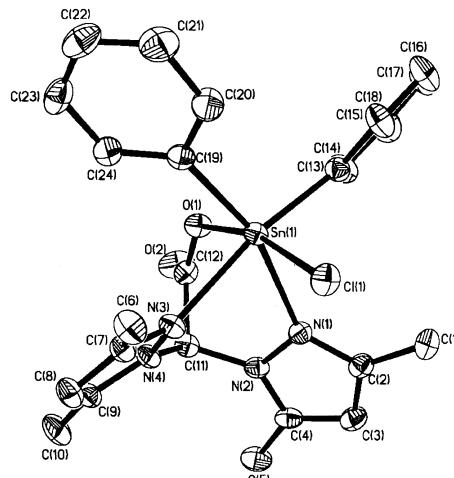


Fig. 1 The molecular structure of **4**. Selected bond distance [\AA] and angles [$^\circ$]: $\text{Sn}(1)-\text{O}(1)$ $2.137(3)$, $\text{Sn}(1)-\text{N}(3)$ $2.314(4)$, $\text{Sn}(1)-\text{N}(1)$ $2.399(3)$, $\text{Sn}(1)-\text{Cl}(1)$ $2.419(3)$, $\text{O}(2)-\text{C}(12)$ $1.197(4)$ and $\text{O}(1)-\text{C}(12)$ $1.287(4)$; $\text{N}(3)-\text{Sn}(1)-\text{N}(1)$ $73.9(1)$, $\text{O}(1)-\text{Sn}(1)-\text{Cl}(1)$ $165.33(7)$, $\text{C}(13)-\text{Sn}(1)-\text{C}(19)$ $107.6(1)$, $\text{O}(1)-\text{Sn}(1)-\text{C}(19)$ $92.11(14)$, $\text{C}(19)-\text{Sn}(1)-\text{N}(1)$ $162.13(11)$, $\text{N}(3)-\text{Sn}(1)-\text{Cl}(1)$ $89.40(7)$ and $\text{O}(1)-\text{Sn}(1)-\text{N}(1)$ $80.9(1)$.

neutral poly(pyrazol-1-yl)alkane, but its electron-donating ability is weaker than that of poly(pyrazol-1-yl)borate ligands.

Experimental

Preparation of 4: A solution of Ph_2SnCl_2 (0.172 g, 0.5 mmol) and bis(3,5-dimethylpyrazol-1-yl)acetate lithium¹⁵ (0.127 g, 0.5 mmol) in 20 ml of CH_2Cl_2 was stirred for 5 h at room temperature, and then filtered. The filtrate was concentrated under a reduced pressure to *ca* 5 ml, and the same volume of hexane was slowly added. The solution was left at room temperature to yield colourless crystals **4**. Yield: 78%. ^1H NMR (CDCl_3): δ 2.22 (s, 12H, CH_3), 5.88 (s, 2H, H^4 of pyrazole ring), 6.72 (s, 1H, CH), 7.23–7.68 (m, 10H, C_6H_5). ^{119}Sn NMR (CD_3COCD_3): δ -410.5. IR (KBr): ν_{CO} 1692.5 (s), 1460.3 (m) cm^{-1} ; $\nu_{\text{pyrazole ring}}$ 1557.6 (m) cm^{-1} . Found: C, 52.21; H, 4.36; N, 10.37%. $\text{C}_{24}\text{H}_{25}\text{ClN}_4\text{O}_2\text{Sn}$ requires C, 51.85; H, 4.50; N, 10.08%.

Preparation of 5: This compound was obtained using Ph_2SnBr_2 instead of Ph_2SnCl_2 as described above for **4**. Yield: 70%. ^1H NMR (CDCl_3): δ 2.22 (s, 12H, CH_3), 5.89 (s, 2H, H^4 of pyrazole ring), 6.92 (s, 1H, CH), 7.24–7.67 (m, 10H, C_6H_5). IR (KBr): ν_{CO} 1677.3 (s), 1460.9 (m) cm^{-1} ; $\nu_{\text{pyrazole ring}}$ 1558.9 (m) cm^{-1} . Found: C, 48.32; H, 4.38; N, 9.48%. $\text{C}_{24}\text{H}_{25}\text{BrN}_4\text{O}_2\text{Sn}$ requires C, 48.00; H, 4.17; N, 9.33%.

Crystal data of 4: $\text{C}_{24}\text{H}_{25}\text{ClN}_4\text{O}_2\text{Sn}$, $M = 555.62$, monoclinic space group $P2(1)/n$, $a = 8.598(12)$, $b = 15.90(2)$, $c = 17.95(2)$ \AA , $\beta = 103.856(14)^\circ$, $V = 2383(6)$ \AA^3 , $Z = 4$, $\rho_{\text{calc}} = 1.548$ Mg/m^3 , $\mu(\text{MoK}\alpha) = 1.212$ mm^{-1} , $T = 293(2)$ K. 9618 Reflections of which 4195 with $I > 2\sigma(I)$ were measured ($1.73 < \theta < 25.03^\circ$) on a Siemens SMART/CCD area detector equipped with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ \AA). The structure was resolved by the direct method and refined by full-matrix least-squares on F^2 using the SHELXL-97 program, $R_1 = 0.029$ and $R_{\text{w}} = 0.0749$ with GOF = 1.069. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were located on the calculated position. Full crystallographic details have been deposited at the Cambridge Crystallographic Data Centre (CCDC 172980).

This work is supported by the National Natural Science Foundation of China (No. 20172029). P.J. Zhu thanks the Innovative Foundation of Department of Chemistry at Nankai University for Undergraduates.

Received 25 June 2001; accepted 29 January 2002
Paper 01/933

References

- 1 S. Trofimenko, *Chem. Rev.*, 1993, **93**, 943.
- 2 G.G. Lobbia, G. Valle, S. Calogero, P. Cecchi, C. Santini and F. Marchetti, *J. Chem. Soc., Dalton Trans.*, 1996, 2475.
- 3 G.G. Lobbia, P. Cecchi, C. Santini, S. Calogero, G. Valle and F.E. Wagner, *J. Organomet. Chem.*, 1996, **513**, 139.
- 4 G.G. Lobbia, P. Cecchi, S. Calogero, G. Valle, M. Chiarini and L. Stievano, *J. Organomet. Chem.*, 1995, **503**, 297.
- 5 D.K. Dey, M.K. Das and R.K. Bansal, *J. Organomet. Chem.*, 1997, **535**, 7.
- 6 K. Mashima, T. Oshiki and K. Tani, *Organometallics*, 1997, **16**, 2760.
- 7 T. Oshiki, K. Mashima, S. Kawamura, K. Tani and K. Kitaura, *Bull. Chem. Soc. Jpn.*, 2000, **73**, 1735.
- 8 R. Visalakshi, V.K. Jain, S.K. Kulshreshtha and G.S. Rao, *Inorg. Chim. Acta* 1986, **118**, 119.
- 9 G.G. Lobbia, A. Cingolani, D. Leonesi, A. Lorenzotti and F. Bonati, *Inorg. Chim. Acta* 1987, **130**, 203.
- 10 C. Pettinari, A. Lorenzotti, G. Sclavi, A. Cingolani, E. Rivarola, M. Colapietro and A. Cassetta, *J. Organomet. Chem.*, 1995, **496**, 69.
- 11 C. Pettinari, M. Pellei, A. Cingolani, D. Martini, A. Drozdov, S. Troyanov, W. Panzeri and A. Mele, *Inorg. Chem.*, 1999, **38**, 5777.
- 12 L.F. Tang, Z.H. Wang, W.L. Jia, Y.M. Xu and J.T. Wang, *Polyhedron*, 2000, **19**, 381.
- 13 B.S. Hammes and C.J. Carrano, *J. Chem. Soc., Dalton Trans.*, 2000, 3304.
- 14 W. Kläui, M. Berghahn, G. Gheinwald and H. Lang, *Angew. Chem. Int. Ed.*, 2000, **39**, 2464.
- 15 A. Otero, J. Fernández-Baeza, J. Tejeda, A. Antiñolo, F. Carrillo-Hermosilla, E. Díez-Barra, A. Lara-Sánchez and M. Fernández-López, *J. Chem. Soc., Dalton Trans.* 2000, 2367.
- 16 D.L. Reger, T.C. Grattan, K.J. Brown, C.A. Little, J.J.S. Lamba, A.L. Rheingold and R.D. Sommer, *J. Organomet. Chem.*, 2000, **607**, 120.